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Genome-encoded microRNAs (miRNAs) provide a posttranscriptional regulatory layer, which is important for pancreas devel-
opment. Differentiation of endocrine cells is controlled by a network of pancreatic transcription factors including Ngn3 and
NeuroD/Beta2. However, how specific miRNAs are intertwined into this transcriptional network is not well understood. Here,
we characterize the regulation of microRNA-7 (miR-7) by endocrine-specific transcription factors. Our data reveal that three
independent miR-7 genes are coexpressed in the pancreas. We have identified conserved blocks upstream of pre-miR-7a-2 and
pre-miR-7b and demonstrated by functional assays that they possess promoter activity, which is increased by the expression of
NeuroD/Beta2. These data suggest that the endocrine specificity of miR-7 expression is governed by transcriptional mechanisms
and involves members of the pancreatic endocrine network of transcription factors.

1. Introduction

The development of the endocrine pancreas is governed by a
network of transcription factors that specify different endo-
crine cell types, including insulin-producing beta cells,
glucagon-producing alpha cells, somatostatin-producing
delta cells, pancreatic polypeptide-producing PP cells, and
ghrelin-producing epsilon cells [1–3]. The endocrine differ-
entiation program is initiated by neurogenin3 (Ngn3) [4, 5].
Next, a complex network of transcription factors is activated
to differentially specify the endocrine lineages (reviewed in
[3, 6]).

Genome-encoded miRNAs act in concert with transcrip-
tion factors to refine gene expression and confer robustness
to developmental transitions [7–10]. Many miRNA genes are
nested within introns of protein-coding genes and are
subjected to transcriptional control with their host gene
[11]. However, other miRNA genes are located in intergenic
regions and are expressed autonomously. For example, in a
previous study, we characterized the pancreas-enriched miR-
375 and demonstrated that cell specificity is controlled tran-
scriptionally through well-defined cis-regulatory elements
[12].

Like miR-375, miR-7 is highly and selectively expressed in
the endocrine pancreas of zebrafish, mouse, and human [13–
16]. miR-7 is an evolutionarily conserved miRNA, encoded
by a single gene in flies and by three different genomic loci in
mammals. In mice two miR-7 genes are located in intergenic
regions of Chr. 7 (mmu-mir-7a-2) and Chr. 17 (mmu-mir-
7b), whereas a third miR-7 gene, mmu-mir-7a-1, is embed-
ded within an intron of the gene encoding for the RNA-
binding protein, Hnrnpk (MGI: 99894, on Chr. 13).

The two miR-7a genes generate an identical 22nt mature
sequence, whereas miR-7b differs by a single nucleotide.
However, functionally the three genes are identical, as they
harbor the same “seed” sequence. Hence, all miR-7 genes
coregulate the very same target set. While a defined set of
targets is suggested for miR-7 [17] some of which have been
experimentally validated [18], little is known about miR-
7 promoter structure or the mechanisms controlling miR-7
expression.

In this study we characterized elements within the mmu-
mir-7a-2 and mmu-mir-7b upstream regulatory sequences.
We show that miR-7 responds to Ngn3 directly. However,
our data suggest that NeuroD/Beta2, the primary effector
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Figure 1: Three miR-7 genes are expressed in beta cells. (a) and (b) Taqman qPCR analysis for mature miR-7a and miR-7b in several tissues:
the aorta and pulmonary artery, heart, isolated islets, and brains from three months old mice. Data normalized to sno234. (c) qPCR analysis
for miR-7 precursors reveals expression in beta-TC cultured cells. Data normalized to GAPDH and 18S. n = 4 independent measurements,
duplicates each. (d) Taqman qPCR analysis to mature miR-7a and miR-7b in beta-TC cultured cells. Data normalized to sno234. n = 4
independent measurements in duplicates. Error bars represent ± SEM.

of Ngn3, controls miR-7 and is probably responsible for
maintenance of miR-7 expression in differentiated endocrine
cells.

2. Materials and Methods

2.1. Quantitative PCR for Precursor and Mature miRNA.
Extraction of total RNA was carried out by the miRNeasy
Mini Kit (Qiagen). For precursor quantification, synthesis
of cDNA was performed using miScript system (Qiagen).

cDNA was synthesized from miRNAs using Taqman
MicroRNA qPCR Assays (Applied Biosystems). qPCR anal-
ysis of mRNA was performed on LightCycler 480 System
(Roche) using Kapa SYBR Green qPCR kit (Finnzymes).
miRNA levels were normalized to the expression of small
RNAs (sno234 and U6) and mRNA normalized to GAPDH
and HPRT. (primer sequences are described in Supplemen-
tary Table 1 available online at doi: 10.1155/2012/695214).

2.2. Cell Culture and Luciferase Reporter Assay. HEK-293T
cells (American Type Culture Collection), betaTC-3 (a gift
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Figure 2: Conserved sequences upstream of miR-7 genes. Screen capture from the UCSC Genome Browser reveals fragments of Mus
musculus chromosome 7 (a) and chromosome 17 (b). Tracks for conservation within mammals and the annotation of the pre-miR-7
sequences are depicted. Dashed squares demarcate the sequences that were further investigated. Scale bars represent 500 bp.

from Shimon Efrat), and MIN6 cells (a gift from Jun-ichi
Miyazaki) were grown in Dulbecco’s Modified Eagle Medium
(DMEM) with 10% FBS, 2 mM L-glutamine, 100 U/mL
penicillin/streptomycin at 37◦C at 5% CO2 in a humidified
incubator. Experiments on MIN6 cells were performed
between passages 18 to 28.

For miR-7 promoter analyses, fragments of 256 bp,
206 bp, and 156 bp (representing miR-7a-2 “block 1”, miR-
7a-2 “block 2”, and “block 3” of miR-7b, resp.) were sub-
cloned into pGL3-basic, using restriction enzymes BglII and
KpnI. Primer sequences are described in Table S1. HEK-
293T cells were transfected with 100 ng of the reporter, 20 ng
of A20 Renilla reporter, and in addition 50 ng of pcDNA3
empty and/or NeuroD/Beta2 and Ngn3 expression vectors.
Reporter activity was measured 48 h after transfection with
the Dual-Luciferase Reporter Assay System (Promega).

For overexpression analysis, expression vectors for tran-
scription factors, pcDNA3 empty vector, and CMV-GFP
vectors were transfected to MIN6 cells using Lipofectamine
2000 reagent (Invitrogen), according to the manufacture’s
instructions. miR-7 endogenous expression was analyzed by
qPCR 48 h later.

2.3. Statistical Analysis. Analysis was performed using either
Student’s t-test or two-way ANOVA by the JMP software.
Results are given as mean ± SEM. The null hypothesis was
rejected at the 0.05 level (∗∗).

3. Results and Discussion

3.1. Three miR-7 Loci Are Expressed in Endocrine Cells. Since
miR-7 gene has three genomic copies in mouse and human,
we first determined which of them is expressed in endocrine
cells. As previously shown [19], miR-7a and miR-7b were
highly and specifically expressed in islets of Langerhans,
relative to other organs such as heart and brain (Figures
1(a) and 1(b)). The precursors transcribed from the three
different loci can be distinguished by quantitative real-time
PCR (qPCR). Therefore, we designed specific primers for
each of miR-7 precursors (for oligo sequences, see Table S1)
and performed a qPCR study in BetaTC3 cell line. This
analysis revealed that all three miR-7 genes are expressed
in cultured beta cells (Figure 1(c)). Consistent with these
results, qPCR for the mature miR-7a and miR-7b revealed
expression of both forms of miR-7 in beta cells (Figure 1(d)).
Taken together, the analysis of miR-7 expression suggests
that the three miR-7 loci are activated in beta cells and are
responsible for the overall high expression of the mature
miR-7.

3.2. Sequence Analysis of Potential miR-7 Regulatory Regions.
Comparative genomics is commonly used to identify con-
served sequences of functional importance [12, 20]. There-
fore, we compared the region upstream of the pre-miR-7
sequences among several vertebrate orthologs and identified
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Figure 3: miR-7 putative promoters induce reporter activation. (a) Schematic representation of conserved sequences, upstream of pre-miR-
7a-2 hairpins (“block 1” and “block 2”) and pre-miR-7b (“block 3”) that were subcloned upstream of pGL3 basic luciferase reporter. (b)
Relative activation of luciferase firefly to renilla in HEK-239 cells, transfected with various reporters. pGL3-basic serves as control (“Ctrl”).
(c) Relative luciferase activation in MIN6 beta cells transfected with the indicated reporters. n = 3 experiments, in triplicates. Error bars
represent ± SEM.

three highly conserved sequences, which may be potentially
functional promoter regions. Trimethylation of lysine 4 of
histone 3 (H3K4) is involved in activation of transcription
and marks the position of transcriptional start site of many
genes, including insulin [21]. Accordingly, we identified typ-
ical H3K4 methylation pattern [22, 23], indicating possible
transcriptional start sites, at the vicinity of miR-7 genomic
regions.

For miR-7a-2 we identified two conserved sequences: the
256 bp long “block 1” and 206 bp “block 2,” which are located
1420 bp and 450 bp upstream of the miR-7a-2 hairpin,
respectively (Figure 2(a)). For miR-7b, a single 156 bp long
“block 3” conserved sequence was identified, positioned
1,235 bp upstream of the miR-7b hairpin (Figure 2(b)). miR-
7a-1 was omitted from this analysis since it is embedded in
an intron of the Hnrnpk gene and is likely regulated by the
promoter of the host gene.

3.3. Activity of the miR-7 Promoters in Cultured Cells. To
functionally characterize miR-7 promoters, the fragments
consisting of blocks 1–3 were fused separately to a firefly

luciferase reporter gene, on a promoterless plasmid (pGL3-
basic), and transfected into the pancreatic beta cell line MIN6
and the embryonic kidney line HEK 293.

In HEK-293T cells, “block 2” produced a twofold
increase in luciferase activity, relative to pGL3-basic reporter
(“Ctrl”), indicating weak promoter activity (Figure 3(b),
middle panel). “Block 3”, on the other hand, produced a
large (200-fold) increase in luciferase activity, indicating the
presence of a strong promoter in this region (Figure 3(b),
right panel). Surprisingly “block 1” resulted in repression
of the luciferase activation, suggesting that this conserved
sequence may be involved in repression of gene transcription
(Figure 3(b), left panel). We then examined whether the
putative promoter sequences could drive luciferase activation
in MIN6 beta cells. We observed that only the DNA
sequences dubbed “block 3” showed significant promoter
activity (Figure 3(c)). Taken together, these results show that
“block 2” and “block 3” possess weak and strong promoter
activity, respectively. The activity of these fragments is not
restricted to pancreatic cells, and presumably these promoter
fragments require additional elements to confer selectivity in
vivo.
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Figure 4: Transactivation of miR-7 reporters in HEK 293T. (a) The luciferase activity of a reporter driven by “block 1” did not demonstrate
response to Ngn3 or NeuroD/Beta2. However, reporters driven by “block 2” are induced by both Ngn3 and NeuroD/Beta2 (b). Highest
luciferase response is induced by a combination of Ngn3 and NeuroD/Beta2. (c) “Block 3” transcription is transactivated only by
NeuroD/Beta2 but not by Ngn3. Luciferase activity normalized to A20-Renilla expression and to transactivation by a control pcDNA3-
empty vector. n = 3 experiments, in triplicates. Error bars represent ±SEM (∗∗P < 0.05).



6 Experimental Diabetes Research

∗∗

0

0.5

1

1.5

2

2.5

m
iR

-7
 e

xp
re

ss
io

n
 (

A
U

)

GFP E2F NeuroD
/Beta2

Ngn3 Hnf1b Insm1Hnf1b
Pdx1

WT

(a)

Ngn3

NeuroD/Beta2

miR-7

(b)

Figure 5: NeuroD/Beta2 regulates miR-7. (a) miR-7 expression in MIN6 cells (passages 22–24), transfected with expression vectors for
various transcription factors. Endogenous miR-7 expression is upregulated upon NeuroD/Beta2 introduction, relative to GFP-expressing
control vector. (b) A Schema describing miR-7 regulators.

3.4. bHLH Transcription Factors Directly Induce miR-7 Pro-
moter Activity. It has been previously shown that the bHLH
transcription factors, Ngn3 and NeuroD1, play a central role
in pancreas endocrine development and in mature beta-cell
function, respectively. These proteins function through E-
boxes (consensus sequence CAxxTG) located in target gene
promoters [24]. Since two conserved E-box elements were
identified in miR-7 promoter sequences (Figure 3(a)), we
tested whether Ngn3 and NeuroD1 expression regulates miR-
7 promoter activity.

For this, we performed transactivation experiments,
in which luciferase reporter constructs were cotransfected
into HEK-293T cells in the presence of expression vectors
encoding the endocrine transcription factors. These analyses
showed activation of “block 2” promoter in response to both
NeuroD/Beta2a and Ngn3. In the presence of both factors,
an additive effect was observed (Figure 4(b)). With “block
3”, NeuroD/Beta2 produced significant activation, whereas
Ngn3 had little or no effect. The expression of block 1-
containing promoter was not significantly affected by any of
the co-transfected transacting factors.

Our study, therefore, suggests that the sequence upstream
of miR-7b is able to activate transcription in cultured beta
cells and can be activated by the endocrine transcription
factor NeuroD/Beta2. The block 2 region upstream of miR-
7a-2 can be activated both by NeuroD/Beta 2 and by Ngn3.
However, this sequence shows very low promoter activity
in the beta cell line MIN6 and therefore probably works in
concert with other elements in order to transcribe the miR-
7a-2 locus in beta cells.

A single ancestral miR-7 gene in invertebrates has under-
gone genomic duplication in the vertebrate clade. While
duplication of genes often leads to functional divergence of
each locus, our data suggest that miR-7 expression from three
independent loci contributes primarily to higher levels of

expression. Furthermore, coregulation of miR-7a-2 and miR-
7b by NeuroD/Beta2 suggests that these genes respond to
similar transacting factors in the endocrine pancreas.

3.5. Endogenous miR-7 Expression Is Activated by Neu-
roD/Beta2 in Cultured Beta Cells. Finally, we determined
whether expression of endogenous miR-7 can be mod-
ified by introducing endocrine transcription factors into
beta cell lines. To this end, we transfected MIN6 cells with
expression vectors for Pdx1, Ngn3, NeuroD/Beta2, Hnf1b,
Insm1, and E2A. Of these, miR-7 expression was induced
in cultured beta cells only by NeuroD/Beta2 (Figure 5(a)).
This is consistent with the results obtained from reporter
experiments and suggests that selective expression of miR-
7 is controlled by lineage-specific transcription factors,
primarily, NeuroD/Beta2. This supports the hypothesis that
miR-7 itself may be a component of this cascade with
functional roles in controlling endocrine cell development at
a posttranscriptional level (see model in Figure 5(b)).

4. Conclusions

During development, Ngn3 induces endocrine cell dif-
ferentiation by upregulating transcription factors such as
NeuroD/Beta2, Pax4, Arx, and Pax6. Indeed, loss of Ngn3
causes blockade in endocrine differentiation [5]. At the same
time, Ngn3 also upregulates miR-7 expression through its
effector, the transcription factor NeuroD/Beta2, that is likely
involved in maintaining miR-7 expression also in mature
cells.

In summary, our analysis identifies miR-7 as a novel
component downstream of Ngn3 and NeuroD, embedded
within the transcription factor network regulating pancreas
development. Further dissection of the transcriptional mech-
anisms controlling expression of miR-7 and other endocrine
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miRNAs will contribute substantially to our overall under-
standing of the role of miRNA in pancreas development and
function.
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